Write the following cubes in expanded form : $\left[\frac{3}{2} x+1\right]^{3}$
Using Identity $VI$ and Identity $VII,$ we have
$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\left[\frac{3}{2} x+1\right]^{3}=\left(\frac{3}{2} x\right)^{3}+(1)^{3}+3\left(\frac{3}{2} x\right)$ $(1)$ $\left[\frac{3}{2} x+1\right]$
$=\frac{27}{8} x^{3}+1+\frac{9}{2} x\left[\frac{3}{2} x+1\right]$ [Using Identity $VI$]
$=\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x=\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1$
Evaluate the following using suitable identities : $(99)^{3}$
Determine which of the following polynomials has $(x + 1)$ a factor : $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$
Find the zero of the polynomial : $p(x) = x + 5$
Factorise the following using appropriate identities :$x^{2}-\frac{y^{2}}{100}$
Find the degree of the polynomials given : $x^{5}-x^{4}+3$